Room-Temperature Electrical Field-Enhanced Ultrafast Switch in Organic Microcavity Polariton Condensates

Jianbo De, Xuekai Ma, Fan Yin, Jiahuan Ren, Jiannian Yao, Stefan Schumacher, Qing Liao, Hongbing Fu, Guillaume Malpuech, and Dmitry Solnyshkov Room-Temperature Electrical Field-Enhanced Ultrafast Switch in Organic Microcavity Polariton Condensates J. Am. Chem. Soc (2023) https://pubs.acs.org/doi/10.1021/jacs.2c07557

We demonstrate a significant improvement of emitted intensity and condensation threshold by applying an electric field to a microcavity filled with an organic microbelt. Our theoretical investigations indicate that the electric field makes the excitons dipolar and induces an enhancement of the exciton–polariton interaction and of the polariton lifetime. Based on these electric field-induced changes, a sub-nanosecond electrical field-enhanced polariton condensate switch is realized at room temperature, providing the basis for developing an on-chip integrated photonic device in the strong light–matter coupling regime.